
To Enhance Type 4 Clone Detection in Clone 
Testing 

Swati Sharma#1, Priyanka Mehta#2 
1M.Tech Scholar, 

2Head of Department, 

 Department of Computer Science & Engineering, 

Universal Institute of Engineering & Technology, 

Lalru, Punjab, India 

Abstract— The means of software reuse is copying and
modifying block of code that detect cloning. As a survey, it is 
observed that 20-30% of module in system may be cloned. So 
it is mandatory to detect clones in system to reduce replication 
and improve reusability. 

Code clone is similar or duplicate code in source code that 
is created either by replication or some modifications. Clone is 
a persistent form of Software Reuse that effect on maintenance 
of large software. In previous research, the researcher 
emphasis on detect type 1, type 2, and type 3 of type of clones. 
The existing code clone detection tools are used to detect clone 
in source code. In this research, the enhancement in code clone 
detection algorithm will be proposed which detect type 4. In 
this work, firstly, use an existing algorithm to detect clone. 
Secondly, we put some intensification in that algorithm to 
detect clone. Thirdly, we combine algorithm with type 4 to 
detect a clone in particular function. 

By using type 4, the efficiency of clone detection is increased. 
Clone is detected in particular function, which is more 
accurate and more efficient in manner. 

Keywords— Software clone, clone detection, clone testing,
code clone, algorithm, effectiveness of software. 

I. INTRODUCTION 

Software engineering means building, evolving and 
maintaining software systems. Software engineering means 
set of problem solving skills, techniques, technology and 
methods applied upon a variety of domains to evolve and 
create useful systems that solve many problems like 
practical problems. Software engineer handles software 
engineering projects that discover, create, build software 
and tells its behaviour [15].Software means a non-tangible 
device like documentation and computer programs and it is 
different from tangible hardware device. Software 
Engineering is the branch of computer science which 
applies engineering principles to create, operate, modify 
and maintain of software components [21]. Software 
engineers adopt an organized and systematically approach 
regarding their work using some techniques and tools 
depending upon the resources available and problem to be 
solved. System engineering is different from software 
engineering. System engineering means deployment, 
architectural design and integration where as software 
engineering is concern with development, quality and 
testing and control of the system. 

The main goals of software engineering are as follows. 
 To produce software of high quality having less

cost.
 To achieve Correctability.
 To gain reliability.
 To improve efficiency.
 To produce the system under budget and on

schedule.

A. Basic Activities of Software Engineering 

The basic activities which are necessary to follow in 
software engineering are as follow:-       

 Design of the product
 Implementation of the product
 Testing of the product.
 Integrates sub parts and test them as a whole.
 Maintenance of the system.

B. Software Cloning 

Software clones are the regions of source code which are 
highly similar; these regions of similarity are called clones, 
clone classes, or clone pairs. While there are several reasons 
why two regions of code may be similar, the majority of the 
clone analysis literature attributes cloning activity to the 
intentional copying and duplication of code by 
programmers; clones may also be attributable to 
automatically generated code, or the constraints imposed by 
the use of a particular framework or library. In addition to 
these, some other issues, including programmer’s behaviour 
such as laziness and the tendency to repeat common 
solutions, technology limitations, code understand ability 
and external business forces have influences on code 
cloning. Cloning is the unnecessary duplication of data 
whether it is at design level or at coding level. 

Cloning works at the cost of increasing lines of code 
without adding to overall productivity. Same software bugs 
and defects are replicated that reoccurs throughout the 
software at its evolving as well its maintenance phase. It 
results to excessive maintenance costs as well. So cut paste 
programming form of software reuse deceivingly raise the 
number of lines of code without expected reduction in 
maintenance costs associated with other forms of reuse. So, 
clones, is a promising way to reduce the maintenance cost 
in future. 

 Swati Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 967-971

www.ijcsit.com 967



Clone detection techniques play an important role in 
software evolution research where attributes of the same 
code entity are observed over multiple versions. 
The reasons why programmers duplicate code are: 

 Making a copy of a code fragment is simpler and 
faster than writing the code from scratch. In 
addition, the fragment may already be tested so 
introduction of a bug seems less likely. 

 Evaluating the performance of a programmer by 
the amount of code he or she produces gives a 
natural incentive for copying code. 

 Efficiency considerations may make the cost of a 
procedure call or method invocation seems too 
high a price. In industrial software development 
contexts, time pressure together with first and 
second points lead to plenty of opportunities for 
code duplication. 

According to the definition of cloning, there can be 
different notions of similarity. They can be based on lexical 
or syntactic structure or can be semantics, or functionality. 
They can even be similar if follow the same patterns, that is, 
the same building plan. Semantic similarity relates to the 
observable behavior. A piece of code, A, is similar to 
another piece of code, B, if B subsumes the functionality  
of A.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1 Source code with its clones 

C. Background of Software Cloning 

Basic clone detection terms: 

1) Code Fragment: A code fragment a piece of code 
including function definition, begin-end block, or sequence 
of statements. We use file name and begin-end line 
numbers in the original code base to identify code fragment. 

2) Code Clone: A code clone is a similar or duplicate 
code fragment in a source code or created either by 
replication or some modifications. 

3) Clone Pair: if there is an equivalence relation 
between two code segments, then they form a clone pair. 

4) Clone Class: It is defined as collection of similar 
code segments. Each code segment in a clone class form a 
clone pair with other code segment of that class. 

5) Exact Clones: Two or more code fragments are 
called exact clones if they are identical to each other with 
some differences in comments and whitespace or layout.  

6) Renamed Clones: People use the term renamed 
clones when identifier names, literals values, comments or 
whitespace changes in the copied fragments. Thus, a 
renamed clone is essentially a Type II clone. 

7) Near-Miss Clones: These are those clones where 
the copied fragments are very similar to the original. 
Editing activities such as changing in comments, layouts, 
changing the position of the source code elements through 
blanks and new lines, changing the identifiers and literals. 

8) Semantic Clones: Semantic Clones are defined as 
functionally identical code fragments. 

 
D. Types of Code Clones 

There are basically four types of code clones. They are 
explained following:- 

1) Type 1(Exact clones): In Type I clones, a copied 
code fragment is the same as the original. These code 
clones are identical code clones with some modification in 
white space and comments. Type I is widely known as 
Exact clones.  

Let us consider the following code fragment: 
if (a >= b) { 
c = d + b; // Comment1 
d = d + 1;} 
else 
c = d - a; //Comment2 

An exact copy clone of this original copy could be as 
follows: 
if (a>=b) { 
// Comment1' 
c=d+b; 
d=d+1;} 
else // Comment2' 
c=d-a; 

We see that these two fragments are textually similar 
(even line-by-line) after removing the whitespace and 
comments.  
A typical line-by-line technique may fail to detect such 
clones that vary in layout. 

2) Type 2(Renamed/parameterized clones): A Type II 
clone is a code fragment that is the same as the original 
except for some possible variations about the corresponding 
names of user-defined identifiers (name of variables, 
constants, class, methods and so on), types, layout and 
comments. 

Let us consider the following code fragment. 
if (a >= b) { 

 If(a>b) 
{ 
b++; 
a=1; 
} 

If(a>b) 
{ 
b++; 
a=1; 
} 

If(i>j) 
{ 
j++; 
i=0; 
} 

Copied & pasted 

Renamed 

Renamed  Code 
Clones 

Exact Code 
Clones 

 Swati Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 967-971

www.ijcsit.com 968



c = d + b; // Comment1 
d = d + 1 ;} 
else 
c = d - a; //Comment2 

A Type II clone for this fragment can be as follows: 
if (m >= n) 
{ // Comment1' 
y = x + n; 
x = x + 5; //Comment3 
} 
else 
y = x - m; //Comment2' 

We see that the two code segments change a lot in their 
shape, variable names and value assignments. However, the 
syntactic structure is still similar in both segments. 

 

3) Type 3(Near Miss Clones): These code clones are 
copied fragments by changing, adding or removing 
statements. 

Consider the original code segment: 
if (a >= b) { 
c = d + b; // Comment1 
d = d + 1;} 
else 
c = d - a; //Comment2 

If we now extend this code segment by adding a 
statement e = 1 then we can get, 
if (a >= b) { 
c = d + b; // Comment1 
e = 1; // This statement is added 
d = d + 1; } 
else 
c = d - a; //Comment2 

This copied fragments with one statement inserted is 
called Type III code clone of the original with a gap of one 
statement inserted. 

 

4) Type 4(Semantic Clones): These code clones are 
based on function similarity but they are different in syntax. 
These clones are termed as Type IV semantic clones In this 
type of clones, the cloned fragment is not necessarily 
copied from the original. Two code fragments may be 
developed by two different programmers to implement the 
same kind of logic making the code fragments similar in 
their functionality. Functional similarity reflects the degree 
to which the components act alike. Let us consider the 
following code fragment 1, where the final value of 'j' is the 
factorial value of the variable VALUE. 

 
Fragment 1: 
int i, j=1; 
for (i=1; i<=VALUE; i++) 
j=j*i; 

Now consider the following code fragment 2, which is 
actually a recursive function that calculates the factorial of 
its argument n. 

 
Fragment 2: 

int factorial(int n) { 
if (n == 0) return 1 ; 
else return n * factorial(n-1) ; 
} 
 

II. CLONE TESTING 

A code clone means similar or duplicate code in a source 
code or code that is created either by replication or some 
modifications .These cloned code needs high maintenance 
cost of software and also cause the code bloating. This is 
because when changes are performed on one clone, then the 
same action is performed on respected clone, this will increase 
the maintenance. These clones can also increase risk of faults 
in system. Past research conclude that around 7% to 23% of 
the source code in a software system contains code clone. 
There are number of techniques and tools to detect the code 
clones, but it is not effective to remove the clones. Because 
code clones are needed for software to function properly. So 
we can apply the principal of refactoring or modularity to 
improve the reusability and maintainability of software from 
clone code. 

 

A. Clone detection techniques   

There are basically 4 types, that are:- textual, lexical, 
syntactic and semantic. 

1) Textual approach: In Textual approaches there is 
little need of normalization or transformation of code. In 
this, basically line to line comparison is done, which 
basically based on two types, one is simple line matching 
and other one is parameterized line matching. This 
technique is basically string based. 

2) Lexical approach: In lexical technique we convert 
source code into tokens using lexical rules. These tokens 
are then compared. 

3) Syntactic approach: In syntactic technique an 
abstract tree is generated. Using parser source code is 
converted into parse tree. Abstract tree is then processed 
either using tree matching or metric to find the clones. 

4) Semantic approach: In this approach, a source 
code is represented as program dependency graph. Nodes 
represent the statements and expressions and edges 
represent control and data dependencies. 

 

III.  PROPOSED METHODOLOGY 

This algorithm safely detects the function clones in the 
source code. In this algorithm ant colony technique is used 
to detect the function clones. 

This algorithm is basically an enhanced version of the 
proposed algorithm. 
If(file is distinct) 
Begin 
Initialization: i:=1, clone=0 
while(i<=n) 
if( Functions are distinct) 
if(clone is distinct from any previously processed clone) 

 Swati Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 967-971

www.ijcsit.com 969



then 
if(startNo_Clone has method parameters) 
then 
compose advice specification with parameter binding 
Initialization: line:= startNo_Clone+ 1 
while(line<= endNo_Clone) 
copy line to Aspect text area 
line++ 
end while 
else 
compose advice specification without parameter binding 
Initialization: line:= startNo_Clone + 1 
while(line<= endNo_Clone) 
copy line to Aspect text area 
line++ 
end while 
end if 
end if 
i++ 
end while 
Initialization: i=1 
while(i<=n) 
comment out clone from array full_File[ ][ ] 
i++ 
end while 
end begin 

 
This algorithm is invoked after clones are detected by ant 

colony optimization technique. The input of this algorithm is 
file name, function names. In line 1, the algorithm is firstly 
checking the file name. In line 3, the algorithm begins by 
initializing the variables. In line 5 and 6 function name will 
checked and then different types of clones will be checked. 
If the function name is distinct then it will also check the 
internal part of the function. From line 8-15, when clone is 
detected in the line, then line number will be incremented by 
1 and control will go to the next line. This procedure will 
continue till the end of the function. From line 17-26, it starts 
to find the function clone without parameter binding. From 
line 27-32, it starts to save the information about the file in 
the form of array. 

IV. RESULTS 

As illustrated in the Fig 2 interface is developed for clone 
testing. The tool will test the efficiency of code cloned with 
existing and with new algorithm for different lines of first 
and second codes. Here we will firstly choose the lines 
from first and second code from which we want to compare 
and find the clones and then we can choose old as well as 
new algorithm. The efficiency of clone testing with new 
algorithm is always greater than the efficiency of clone 
testing with old algorithm. The tool also provides the option 
to reset the chosen lines. The tool also provides options that 
draw bar graphs of corresponding efficiencies of clone 
testing with new and old algorithms. We can also show the 
graphical comparison of the efficiencies of code cloned 
with both the algorithms with Graph option. The exit option 
is used to exits the tool. 

 

 
Fig. 2 Tool for clone testing 

 
Fig. 3 Efficiency comparison between new algorithm and old 

algorithm 

 
As illustrated in the Fig. 3, when Line 1 of first code and 

the Line 1 second code are checked, the tool calculated that 
7.7049% of the code is cloned with the old algorithm where 
as 9.989% of the code is cloned with the new algorithm.  

OLD NEW
0

1

2

3

4

5

6

7

8

9

10
Percentage Comparison

P
er

ce
nt

ag
e 

of
 C

lo
ne

 D
et

ec
tio

n

 
Fig. 4 Graphical Comparison of efficiency with old and new algorithm 

 

 Swati Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 967-971

www.ijcsit.com 970



As illustrated in Fig. 4, the bar graph shows the 
comparison of efficiencies of code cloned with the old 
algorithm as well as with the new algorithm when the Line 
1 of first code and Line 1 of the second code are checked 
and tool calculated that 7.7049% of the code is cloned with 
the old algorithm and 9.989% of the code is cloned with the 
new algorithm. 

 
Fig. 5 Efficiency comparison between new algorithm and old 

algorithm 

 
As illustrated in the Fig. 5, when Line 1 to Line 5 of 

first code and the Line 1 to Line 7 of second code are 
checked, the tool calculated that 74.0379% of the code 
is cloned with the old algorithm where as 84.09% of 
the code is cloned with the new algorithm.  

OLD NEW
0

10

20

30

40

50

60

70

80

90
Percentage Comparison

P
er

ce
nt

ag
e 

of
 C

lo
ne

 D
et

ec
tio

n

 
Fig. 6: Graphical Comparison of efficiency with old and new algorithm 

As illustrated in Fig. 6, the bar graph shows the comparison 
of efficiencies of code cloned with the old algorithm as well 
as with the new algorithm when Line 1 to Line 5 of first 
code and the Line 1 to Line 7 of second code are checked 
and tool calculated that 74.0379% of the code is cloned 
with the old algorithm where as 84.09% of the code is 
cloned with the new algorithm.  

V.  CONCLUSION 

In this paper, we have presented an algorithm approach 
that is used to detect the function clones in software. 
Function clones are harmful to software system because 
they increase the maintenance cost. 

Our approach in this paper is to handle the type 4 clone. 
Because only type 4 can detect the function clones in source 
code. The results also show the comparison of new 
algorithm with old algorithm. By comparison, we analyze 
that enhancement of old algorithm increase efficiency, 
decrease maintenance cost and find out both code clone and 
function clones. 

VI.   FUTURE SCOPE 

In this work, the enhanced algorithm has proposed to 
detect function clones in source code. The further 
enhancement technique will detect clone line by line and 
will tell in which line, clone exist. It will also assign 
severity to the detected clones. The severity of the clones 
will provide better analysis in terms of code clone 
detection. 

REFERENCES 
[1] C. K. Roy, “Detection and Analysis of Near-Miss Software Clones”, 

Ph.D. Thesis, Queen’s School of Computing, Queens University, 
2009-08-31, 14:05:30.233.  

[2] J.H. Johnson, “Identifying redundancy in source codeusing 
fingerprints”, Proceedings of the 1993 Conferenceof the Centre for 
Advanced Studies on Collaborative. 

[3]  B.S. Baker, "On finding duplication and nearduplicationin large 
software systems", Proceedings ofthe 2nd Working Conference on 
Reverse Engineering. 

[4] T. Kamiya, S. Kusumoto, K. Inoue, “CCFinder: AMultilinguistic 
Token-Based Code Clone Detection System for Large Scale Source 
Code”, IEEETransactions on Software Engineering. 

[5] Kodhai.E, Perumal.A, Kanmani.S, “clone detection using textual and 
metrics analysis to figure out all types of clones” in ITC, 2010. 

[6] Rubala Sivakumar, Kodhai.E “code clone detection in website using 
hybrid approach”, in IJCA(0975-888) volume 48-No.13,june 2012. 

[7] Jean Mayrand , Claude Leblanc , Ettore M. Merlo  “Experiment on 
automatic detection of function clone in a software system using 
metrics”. In proc of the Int’l Conf. on software maintenance, page 
244,1996. 

[8] Robin Sharma , Dr. Sushil Garg “Hybrid approach for efficient 
software clone detection” ISSN:2250-3498 April 2013. 

[9] Salwa K.abd-El-Hafiz “A Metrix Based Data Mining Approach For 
Software Clone Detection”, proc. IEEE 36th intenational conference 
on computer software and application,2012. 

[10]  Amandeep Kaur, Balraj Singh, “Study on Metrix Based Approach 
for Detecting Software Code Clones” ISSN:2277 128X 2014. 

[11]  Rainer Koschke, Raimar Falke, Pierre Frenzel “ Clone Detection 
using Abstract Syntax Suffix Trees”-working conference on Reverse 
Engineering-2006. 

[12] Peter Bulychev and Marius Minea, “Duplicate Code Detection using 
Anti-Unification”, A Survey on Software Clone Detection Research, 
2007. 

[13] Jens krinke, “Identifying Similar Code with Program Dependency 
Graph”, proc.eighth working Conf. Reverse Eng,2001, pp 301-309. 

[14] Raghavan komondoor and Susan Horwitz  “Using Slicing to Identify 
Duplication in Source Code”, proc. Int. Symp. Static Analysis,2001. 

[15] Swarnendu Biswas and Rajiv Mall , “ A approach to software 
engineering”, 2009. 

[16] http://www.slideshare.net/engineerrd/software-requirement 
[17]  Myers, Glenford. (1979). “The Art of Software Testing”. 
[18] Åshäll, F. N. “Testing The Product Propagation” ,2011. 
[19] http://guru99.199tech.com/software-testing-introduction-

portance.html 
[20] http://arxiv.org/abs/1205.5615 
[21] Angad Singh Gakhar, “Converting Code Clones To Aspects Using 

Algorithm Approaches”,2009. 
[22] Jovanovic Irena, “Software testing methods and techniques”, 2002. 
[23] Salwa K.Abd-El-Hafiz, “Code Cloning: The Analysis, Detection and 

Removal”,    International Journal of Computer Applications,April 
2013.  

 Swati Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 967-971

www.ijcsit.com 971




